Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diazidomanganese(II)]bis[µ-1-(4-pyridylmethyl)-1H-benzimidazole]]

Chun-Sen Liu,^{a,b}* Jun-Jie Wang^b and Li-Fen Yan^b

^aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and ^bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

Received 12 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.081; data-to-parameter ratio = 16.5.

In the title polymeric compound, $[Mn(N_3)_2(C_{13}H_{11}N_3)_2]_n$, each Mn^{II} centre is six-coordinated in an octahedral geometry by six N atoms from four 1-(4-pyridylmethyl)-1*H*-benzimidazole (*L*) ligands and two azide anions (N₃⁻). Each of the Mn^{II} ions lies on an inversion centre. The *L* ligands and N₃⁻ anions bridge adjacent Mn^{II} centres, generating a polymeric chain running along the [110] direction. Adjacent polymeric chains are arranged in a two-dimensional network parallel to the (001) plane, linked by C-H···N hydrogen bonds.

Related literature

For related literature, see: Chang *et al.* (2005); Desiraju & Steiner (1999); Fan *et al.* (2006); Huang *et al.* (2006); Kitagawa *et al.* (2004); Li *et al.* (2007); Meng *et al.* (2004); Steel (2005); Su *et al.* (2001); Xiao *et al.* (2004).

Experimental

Crystal data $[Mn(N_3)_2(C_{13}H_{11}N_3)_2]$ $M_r = 557.50$ Triclinic, $P\overline{1}$ a = 8.4135 (17) Å b = 8.5823 (17) Å

c = 10.399 (2) Å $\alpha = 67.86 (3)^{\circ}$ $\beta = 86.03 (3)^{\circ}$ $\gamma = 69.80 (3)^{\circ}$ $V = 651.1 (3) \text{ Å}^{3}$

metal-organic compounds

T = 294 (2) K 0.36 × 0.32 × 0.30 mm

Z = 1Mo $K\alpha$ radiation $\mu = 0.55 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	6780 measured reflections
diffractometer	2954 independent reflections
Absorption correction: multi-scan	2828 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.019$
$T_{\min} = 0.827, \ T_{\max} = 0.853$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 179 parameters $wR(F^2) = 0.081$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.31$ e Å⁻³2954 reflections $\Delta \rho_{min} = -0.23$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Mn1-N4	2.2049 (13)	Mn1-N1 ⁱⁱ	2.2869 (12)
Mn1-N1 ⁱ	2.2869 (12)	Mn1-N3	2.3358 (16)
N4-Mn1-N4 ⁱⁱⁱ	180	N4-Mn1-N3 ⁱⁱⁱ	92.39 (5)
$N4-Mn1-N1^{i}$	88.32 (5)	$N1^{ii} - Mn1 - N3^{iii}$	90.37 (5)
N4-Mn1-N1 ⁱⁱ	91.68 (5)	$N1^{i}-Mn1-N3$	90.37 (5)
N1 ⁱ -Mn1-N1 ⁱⁱ	180	N3 ⁱⁱⁱ -Mn1-N3	180
Symmetry codes: -r + 2 - y - z + 2	(i) $-x + 1, -y + 1$	-1, -z + 2; (ii) z	x + 1, y - 1, z; (iii)
x + 2, y, z + 2			

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdots N6^{iv}$	0.93	2.48	3.319 (1)	150
$C11 - H11 \cdots N6^{v}$	0.93	2.58	3.305 (2)	135

Symmetry codes: (iv) x - 1, y, z; (v) -x + 2, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

This work was supported by the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (No. 2008 to C-SL). The authors also gratefully thank Nankai University and Henan Provincial Key Laboratory of Surface and Interface Science for supporting this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2519).

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, Q., Meng, X. R., Song, Y. L. & Hou, H. W. (2005). *Inorg. Chim. Acta*, **358**, 2117–2124.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

- Fan, J., Yee, G. T., Wang, G. B. & Hanson, B. E. (2006). *Inorg. Chem.* **45**, 599–608.
- Huang, M., Liu, P., Wang, J., Chen, Y., Liu, Z. & Liu, Q. (2006). *Inorg. Chem. Commun.* 9, 952–959.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Li, L., Hu, T.-L., Li, J.-R., Wang, D.-Z., Zeng, Y.-F. & Bu, X.-H. (2007). *CrystEngComm*, 9, 412–420.
- Meng, X. R., Xiao, B., Fan, Y. T., Hou, H. W. & Li, G. (2004). Inorg. Chim. Acta, 357, 1471–1477.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Steel, P. J. (2005). Acc. Chem. Res. 38, 243–250.
- Su, C. Y., Cai, Y. P., Chen, C. L. & Kang, B. S. (2001). Inorg. Chem. 40, 2210– 2211.
- Xiao, B., Han, H. Y., Meng, X. R., Song, Y. L., Fan, Y. T., Hou, H. W. & Zhu, Y. (2004). *Inorg. Chem. Commun.* **7**, 378–381.

Acta Cryst. (2008). E64, m29-m30 [doi:10.1107/S1600536807062435]

catena-Poly[[diazidomanganese(II)]bis[*µ*-1-(4-pyridylmethyl)-1*H*-benzimidazole]]

C.-S. Liu, J.-J. Wang and L.-F. Yan

Comment

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). The most frequently used neutral bridging ligands are 4,4'-bipyridine and its derivatives (Kitagawa *et al.*, 2004). In recent years, however, the benzimidazole groups also were used to link different alkyl or aromatic groups to form a series of bi- and multi-dentate flexible ligands, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Li *et al.*, 2007). Many complexes with these ligands show unique structural topologies and interesting properties (Meng *et al.*, 2004), such as three-dimensional and two-dimensional networks (Chang *et al.*, 2005; Fan *et al.*, 2006; Su *et al.*, 2001) and one-dimensional helical chains (Xiao *et al.*, 2004). Recently, we found that Liu and co-workers synthesized a flexible bridging ligand 1-(pyridin-4ylmethyl)-1*H*-benzo[*d*]imidazole (*L*) as well as its chiral one-dimensional double helix polymer, [Ag(*L*)(NO₃)]_n (Huang *et al.*, 2006). As such, we also used *L* as a μ_2 -bridging ligand to react with Mn^{II} salt, meanwhile together with azido anion as a co-ligand, to obtain a one-dimensional manganese coordination polymer [Mn(C₁₃H₁₁N₃)₂(N₃)₂]_n (I). We report here the crystal structure of (I).

The title compound (I) consists of linear polymeric coordination chains containing only one kind of Mn^{II} coordination environment (Fig. 1). The asymmetric unit of (I) is composed of one Mn^{II} ion which lies on an inversion centre, one *L* ligand and one N_3^- anion (*L* is 1-(pyridin-4-ylmethyl)-1*H*-benzo[*d*]imidazole). The geometry around each Mn^{II} ion can be best described as a ideal octahedron (Fig. 1). The Mn^{II} center is six-coordinated by six N atoms from four different *L* ligands and two N_3^- anions, respectively (Table 1). In the crystal structure of (I), *L* adopts μ_2 -bridging 4,4'-bipyridine-like coordination mode and N_3^- serves as a mono-terminal coordination mode [Mn1—N4: 2.2049 (13) Å], which together link the adjacent Mn^{II} ions into a linear chain along the [1 1 0] direction, with the shortest intrachain non-bonding Mn···Mn separation being 9.725 (2) Å (Fig. 2).

In the crystal structure of (I), the adjacent one-dimensional chains $[Mn(C_{13}H_{11}N_3)_2(N_3)_2]_n$ are arranged into a two-dimensional network parallel to the (0 0 1) plane by interchain C–H···N hydrogen bonding interactions between the coordinated *L* ligands and N atoms of azido anions (see Fig. 3 and Table 2) (Desiraju *et al.*, 1999).

Experimental

The ligand 1-(pyridin-4-ylmethyl)-1*H*-benzo[*d*]imidazole (*L*) was synthesized according to a method reported in the literature (Li *et al.*, 2007). The reaction of *L* (58 mg, 0.2 mmol), NaN₃ (13 mg, 0.2 mmol) with Mn(ClO₄)₂ (25 mg, 0.1 mmol) in a mixed solution of methanol and aqua (v/v = 1:1, 10 ml) for a few minutes afforded a yellow solid, which was then filtered. The resulting solution was kept at room temperature. Yellow single crystals of compound (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 40%). Analysis calculated for $C_{26}H_{22}MnN_{12}$: C 56.02, H 3.98, N 30.15%; found: C 55.88, H 3.79, N 30.37%.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms labelled with the suffixes A, B and C are generated by the symmetry operations (1 + x, -1 + y, z), (1 - x, 1 - y, 2 - z) and (2 - x, -y, 2 - z), respectively.

Fig. 2. View of a polymeric chain running along the [1 1 0].

Fig. 3. Part of the crystal packing showing the two-dimensional network in the title compound formed by interchain C—H···N hydrogen-bonded interactions (fine dashed lines). For the sake of clarity, only H atoms involved in the interactions are shown.

catena-Poly[[diazidomanganese(II)]bis[µ-1-(4-pyridylmethyl)- 1H-benzimidazole]]

Crystal data	
$[Mn(N_3)_2(C_{13}H_{11}N_3)_2]$	Z = 1
$M_r = 557.50$	$F_{000} = 287$
Triclinic, PT	$D_{\rm x} = 1.422 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.4135 (17) Å	Cell parameters from 6008 reflections
b = 8.5823 (17) Å	$\theta = 3.2 - 27.5^{\circ}$
c = 10.399 (2) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 67.86 \ (3)^{\circ}$	T = 294 (2) K
$\beta = 86.03 \ (3)^{\circ}$	Block, yellow
$\gamma = 69.80 \ (3)^{\circ}$	$0.36 \times 0.32 \times 0.30 \text{ mm}$
$V = 651.1 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	2954 independent reflections
Radiation source: fine-focus sealed tube	2828 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 294(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -10 \rightarrow 10$
$T_{\min} = 0.827, \ T_{\max} = 0.853$	$k = -11 \rightarrow 11$
6780 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0415P)^{2} + 0.2403P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.081$	$(\Delta/\sigma)_{\rm max} = 0.003$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
2954 reflections	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$
179 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0,188 (10)

methods

Extinction coefficient: 0.188 (10)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	1.0000	0.0000	1.0000	0.02268 (12)
C1	0.13527 (18)	0.75738 (18)	0.81818 (14)	0.0299 (3)
H1	0.1225	0.6635	0.8954	0.036*

C2	0.13205 (16)	1.01940 (17)	0.68138 (13)	0.0259 (3)
C3	0.19824 (16)	0.90468 (18)	0.60918 (14)	0.0281 (3)
C4	0.2474 (2)	0.9643 (2)	0.47385 (16)	0.0421 (4)
H4	0.2914	0.8870	0.4269	0.050*
C5	0.2277 (3)	1.1436 (3)	0.41276 (17)	0.0511 (4)
Н5	0.2594	1.1883	0.3224	0.061*
C6	0.1610(2)	1.2603 (2)	0.48348 (17)	0.0463 (4)
Н6	0.1498	1.3804	0.4390	0.056*
C7	0.1116 (2)	1.20089 (19)	0.61774 (16)	0.0351 (3)
H7	0.0665	1.2789	0.6639	0.042*
C8	0.25306 (18)	0.57026 (19)	0.67617 (16)	0.0332 (3)
H8A	0.2516	0.5976	0.5768	0.040*
H8B	0.1726	0.5091	0.7140	0.040*
C9	0.47260 (18)	0.26337 (19)	0.77339 (17)	0.0351 (3)
Н9	0.3960	0.2185	0.7525	0.042*
C10	0.63090 (19)	0.14894 (19)	0.83664 (17)	0.0365 (3)
H10	0.6578	0.0269	0.8580	0.044*
C11	0.70528 (19)	0.3804 (2)	0.83490 (19)	0.0392 (4)
H11	0.7856	0.4224	0.8536	0.047*
C12	0.5485 (2)	0.5042 (2)	0.77332 (19)	0.0401 (4)
H12	0.5243	0.6254	0.7538	0.048*
C13	0.42862 (16)	0.44572 (18)	0.74119 (14)	0.0265 (3)
N1	0.09396 (15)	0.92194 (15)	0.81364 (12)	0.0285 (2)
N2	0.19812 (14)	0.73794 (15)	0.69955 (12)	0.0278 (2)
N3	0.74795 (14)	0.20399 (15)	0.86900 (12)	0.0297 (3)
N4	1.10239 (16)	0.22079 (17)	0.92696 (13)	0.0341 (3)
N5	1.16197 (15)	0.28050 (15)	0.98900 (12)	0.0298 (3)
N6	1.2213 (2)	0.3409 (2)	1.04762 (16)	0.0492 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02229 (16)	0.02034 (16)	0.02660 (17)	-0.00730 (11)	0.00254 (10)	-0.01032 (11)
C1	0.0331 (7)	0.0231 (6)	0.0295 (6)	-0.0071 (5)	0.0051 (5)	-0.0086 (5)
C2	0.0241 (6)	0.0249 (6)	0.0252 (6)	-0.0061 (5)	-0.0014 (5)	-0.0072 (5)
C3	0.0234 (6)	0.0291 (6)	0.0277 (6)	-0.0055 (5)	-0.0001 (5)	-0.0092 (5)
C4	0.0469 (9)	0.0503 (9)	0.0304 (7)	-0.0167 (7)	0.0093 (6)	-0.0178 (7)
C5	0.0629 (11)	0.0599 (11)	0.0269 (7)	-0.0293 (9)	0.0070 (7)	-0.0057 (7)
C6	0.0581 (10)	0.0373 (8)	0.0355 (8)	-0.0227 (8)	-0.0042 (7)	0.0016 (7)
C7	0.0401 (8)	0.0274 (7)	0.0345 (7)	-0.0111 (6)	-0.0048 (6)	-0.0072 (6)
C8	0.0279 (7)	0.0288 (7)	0.0421 (8)	-0.0001 (5)	-0.0058 (6)	-0.0201 (6)
C9	0.0287 (7)	0.0283 (7)	0.0514 (9)	-0.0073 (6)	-0.0056 (6)	-0.0194 (6)
C10	0.0334 (7)	0.0244 (7)	0.0511 (9)	-0.0042 (6)	-0.0073 (6)	-0.0170 (6)
C11	0.0303 (7)	0.0292 (7)	0.0585 (10)	-0.0097 (6)	-0.0075 (6)	-0.0157 (7)
C12	0.0338 (7)	0.0234 (7)	0.0604 (10)	-0.0065 (6)	-0.0077 (7)	-0.0141 (7)
C13	0.0236 (6)	0.0257 (6)	0.0293 (6)	-0.0038 (5)	0.0018 (5)	-0.0137 (5)
N1	0.0325 (6)	0.0226 (5)	0.0280 (6)	-0.0073 (4)	0.0047 (4)	-0.0094 (4)
N2	0.0262 (5)	0.0230 (5)	0.0309 (6)	-0.0025 (4)	0.0012 (4)	-0.0118 (4)

N3 N4	0.0261 (5) 0.0392 (7)	0.0259 (6) 0.0336 (6)	0.0364 (6) 0.0365 (6)	-0.0055 (4) -0.0207 (5)	-0.0008 (4) 0.0047 (5)	-0.0137 (5) -0.0135 (5)
N5	0.0356 (6)	0.0219 (5)	0.0304 (6)	-0.0125 (5)	0.0040 (5)	-0.0062 (5)
N6	0.0717 (10)	0.0397 (7)	0.0456 (8)	-0.0301 (7)	-0.0050 (7)	-0.0148 (6)
Geometric parar	neters (Å, °)					
Mn1—N4		2.2049 (13)	С6—	H6	0.9	3
Mn1—N4 ⁱ		2.2049 (13)	С7—	H7	0.9	3
Mn1—N1 ⁱⁱ		2.2869 (12)	C8—	N2	1.4	603 (17)
Mn1—N1 ⁱⁱⁱ		2.2869 (12)	C8—	C13	1.5	115 (19)
Mn1—N3 ⁱ		2.3358 (16)	C8—	H8A	0.9	7
Mn1—N3		2.3358 (16)	C8—	H8B	0.9	7
C1—N1		1.3156 (18)	С9—	C10	1.3	79 (2)
C1—N2		1.3540 (18)	С9—	C13	1.3	858 (19)
C1—H1		0.93	С9—	H9	0.9	3
C2—C7		1.395 (2)	C10–	-N3	1.3	392 (19)
C2—N1		1.3968 (18)	C10-	-H10	0.9	3
C2—C3		1.4014 (19)	C11–	-N3	1.3	354 (19)
C3—N2		1.3849 (19)	CII-	-C12	1.3	84 (2)
$C_3 - C_4$		1.391 (2)	C11–	-H11 -C12	0.9	3 80 (2)
C4—C3		0.93	C12-	_H12	1.5	30 (2)
C4—I14 C5—C6		1.403(3)	C12-		0.2	3 869 (12)
C5-H5		0.93	N/	-MITT -N5	1.1	838 (17)
C6—C7		1.383 (2)	N5—	-N6	1.1	612 (18)
N4—Mn1—N4 ⁱ		180	С6—	С7—Н7	12	1.3
N4—Mn1—N1 ⁱⁱ		88.32 (5)	C2—	С7—Н7	12	1.3
N4 ⁱ —Mn1—N1 ⁱⁱ		91.68 (5)	N2—	-C8C13	113	3.50 (11)
N4—Mn1—N1 ⁱⁱⁱ		91.68 (5)	N2—	C8—H8A	108	8.9
N4 ⁱ —Mn1—N1 ⁱⁱⁱ		88.32 (5)	C13–	C8H8A	108	8.9
N1 ⁱⁱ —Mn1—N1 ⁱⁱ	i	180	N2—	-C8—H8B	108	8.9
N4—Mn1—N3 ⁱ		92.39 (5)	C13–	C8H8B	108	8.9
N4 ⁱ —Mn1—N3 ⁱ		87.61 (5)	H8A-		10'	7.7
N1 ⁱⁱ —Mn1—N3 ⁱ		89.63 (5)	C10–	C9C13	119	9.48 (13)
N1 ⁱⁱⁱ —Mn1—N3 ⁱ		90.37 (5)	C10–	С9Н9	120).3
N4—Mn1—N3		87.61 (5)	C13–	—С9—Н9	120).3
N4 ⁱ —Mn1—N3		92.39 (5)	N3—	С10—С9	123	3.55 (13)
N1 ⁱⁱ —Mn1—N3		90.37 (5)	N3—	C10—H10	118	3.2
N1 ⁱⁱⁱ —Mn1—N3		89.63 (5)	С9—	C10—H10	118	3.2
N3 ⁱ Mp1 N3		180	N3—	C11—C12	12	3 86 (14)
N1 - C1 - N2		113 45 (12)	N3	C11—H11	112	R 1
N1-C1-H1		123.3	C12–	-C11-H11	115	3.1
N2-C1-H1		123.3	C13–	C12C11	119	9.19 (14)
C7—C2—N1		130.51 (13)	C13–	—С12—Н12	120).4

C7—C2—C3	120.29 (13)	C11—C12—H12	120.4
N1—C2—C3	109.19 (12)	C12—C13—C9	117.52 (13)
N2—C3—C4	132.11 (14)	C12—C13—C8	123.05 (12)
N2—C3—C2	105.56 (11)	C9—C13—C8	119.42 (13)
C4—C3—C2	122.33 (14)	C1—N1—C2	105.01 (11)
C5—C4—C3	116.72 (15)	C1—N1—Mn1 ^{iv}	123.01 (10)
C5—C4—H4	121.6	C2—N1—Mn1 ^{iv}	131.84 (9)
C3—C4—H4	121.6	C1—N2—C3	106.79 (11)
C4—C5—C6	121.63 (15)	C1—N2—C8	124.89 (12)
С4—С5—Н5	119.2	C3—N2—C8	128.32 (12)
С6—С5—Н5	119.2	C11—N3—C10	116.38 (12)
C7—C6—C5	121.56 (16)	C11—N3—Mn1	121.80 (10)
С7—С6—Н6	119.2	C10—N3—Mn1	121.47 (9)
С5—С6—Н6	119.2	N5—N4—Mn1	131.21 (10)
C6—C7—C2	117.48 (15)	N6—N5—N4	178.77 (15)
C7—C2—C3—N2	-178.72 (12)	N1-C1-N2-C3	0.08 (16)
N1—C2—C3—N2	0.39 (15)	N1-C1-N2-C8	-179.71 (12)
C7—C2—C3—C4	0.6 (2)	C4—C3—N2—C1	-179.55 (16)
N1—C2—C3—C4	179.75 (13)	C2-C3-N2-C1	-0.29 (14)
N2-C3-C4-C5	179.05 (15)	C4—C3—N2—C8	0.2 (2)
C2—C3—C4—C5	-0.1 (2)	C2-C3-N2-C8	179.50 (12)
C3—C4—C5—C6	-0.1 (3)	C13—C8—N2—C1	-79.95 (18)
C4—C5—C6—C7	-0.1 (3)	C13—C8—N2—C3	100.30 (16)
C5—C6—C7—C2	0.6 (3)	C12-C11-N3-C10	2.0 (2)
N1—C2—C7—C6	-179.76 (15)	C12-C11-N3-Mn1	-171.37 (14)
C3—C2—C7—C6	-0.9 (2)	C9-C10-N3-C11	-0.9 (2)
C13—C9—C10—N3	-0.4 (3)	C9—C10—N3—Mn1	172.44 (12)
N3-C11-C12-C13	-1.7 (3)	N4—Mn1—N3—C11	-23.66 (13)
C11—C12—C13—C9	0.2 (2)	N4 ⁱ —Mn1—N3—C11	156.34 (13)
C11—C12—C13—C8	178.92 (15)	N1 ⁱⁱ —Mn1—N3—C11	64.64 (13)
C10—C9—C13—C12	0.7 (2)	N1 ⁱⁱⁱ —Mn1—N3—C11	-115.36 (13)
C10—C9—C13—C8	-178.01 (14)	N4—Mn1—N3—C10	163.34 (12)
N2-C8-C13-C12	-22.6 (2)	N4 ⁱ —Mn1—N3—C10	-16.66 (12)
N2-C8-C13-C9	156.11 (14)	N1 ⁱⁱ —Mn1—N3—C10	-108.36 (12)
N2-C1-N1-C2	0.17 (16)	N1 ⁱⁱⁱ —Mn1—N3—C10	71.64 (12)
N2—C1—N1—Mn1 ^{iv}	-175.95 (9)	N1 ⁱⁱ —Mn1—N4—N5	33.89 (14)
C7—C2—N1—C1	178.65 (14)	N1 ⁱⁱⁱ —Mn1—N4—N5	-146.11 (14)
C3—C2—N1—C1	-0.35 (15)	N3 ⁱ —Mn1—N4—N5	-55.67 (14)
C7—C2—N1—Mn1 ^{iv}	-5.7 (2)	N3—Mn1—N4—N5	124.33 (14)
C3—C2—N1—Mn1 ^{iv}	175.28 (9)		
0		1 1 (1) 1 1	

Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x+1, y-1, z; (iv) x-1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1···N6 ^v	0.93	2.48	3.319(1)	150

C11—H11···N6 ^{vi}	0.93	2.58	3.305 (2)	135
Symmetry codes: (v) $x-1$, y , z ; (vi) $-x+2$, $-y+1$, $-z+2$.				

Fig. 1

Fig. 2

Fig. 3